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Checking a proof without reading it?

GoaL in the next few lectures:
probabilisﬁcall), check non-interactive proofs

ot few locations with small error

CHALLENGE : whot il the Proo(f has 0n|y Qo Sin9|q “mistake"
(How to catch the mistake whp. 7)

EXAMPLE:  given a graph G=(V,E) and a coloring X:V-{123},
how to probabilistically check that X is a 3-colofing of G7
(If G is not 3-colorable, at worst all but one edges are valid 1)

The H\eory of PropagitisTically CHeckasle Proors (PCPs)

oddresses this challenge !

Tools and ideas from inferactive proots, coding theory,

P\'OP&\"\'y +<s+'m3 , ond more .

NYT, 1992.04.07
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Biologists Tell a Tale
Of Interfering In-Laws

New Short Cut Found
For Long Math Proofs

Asteroid
Defense:
‘Risk Is Real,’
Planners Say

Com bt

Found

For Long Math Proofs

A proof can be tested
by checking justa
part, inventors say.

By GINA KOLATA

N a discovery that overturns
centuries of mathematical tra-

dition, a group of graduate stu-

dents and young researchers
has discovered a way to check even
the longest and most complicated
proof by scrutinizing it in just a few
spots.

The finding, which some mathema-
ticians say seems almost magical,
depends upon transforming the set of
logical statements that constitute a
proof into a special mathematical
form in which any error is so ampli-
fied as to be easily detectable.

Using this new result, the research-
ers have already made a landmark
discovery in computer science. They
showed that it is impossible to com-
pute even approximate solutions for a
Jarge group of practical problems
that have long foiled researchers.
Even that negative finding is very
significant, experts say, because in
mathematics, a negative result,

showing something is impossible, can
be just as important and open just as
many new areas Of research as a
positive one.

The discovery was made by San-
jeev Arora and Madhu Sudan, gradu-
ate students at the University of Cali-
fornia at Berkeley, Dr. Rajeev
Motwani, an assistant professor at :
Stanford University, and Dr. Carsten
Lund and Dr. Mario Szegedy, young °
computer scientists at A.T.&T. Bell !
Laboratories. Dr. Motwani, who is the
senior member of the group, just
turned 30 on March 26.

“With the conventional notion of a
proof, you had to check it line by
line,”" said Dr. Michael Sipser, a theo-
retical computer scientist at the Mas-
sachusetts Institute of Technology.
“An error might be buried on page
475, line 6. A ‘less than or equal to’
should have been a ‘less than." That
would totally trash the whole proof.
But you’d have to dig through the
whole thing to find it,”” Dr. Sipser
said. Now, he added, “the new idea is
that there is a way to transform any
proof so that if there is an error, it
appears almost everywhere. I'd say,
‘You have a proof? Show me a page.’
If there is an error, it will be there.”

The finding, which is built on two
and a one half years work by leading

Continued on Page C10
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New Model: Probabilistically Checkable Proofs

NP represents proofs checkable via a deterministic polynomial-time verifier:

Fup X -

T NTERACTIVE PROOFS :

It represents proofs checkable via o

Pol)!nOV“iO\‘*iW\l verifier that has

4

Vie (x)

+hese oddivional resources :

® rondomness
@ inferoction

|

3

FIP(Y) 1( | VI\’(X)

TODAY WE STupy A New. MODEL

{

PRORARILISTICALLY - CHECKARLE  PROOFS -

PCP represents prooks checkable via o

polynomia\-time verifier +hat has

+hese odditional resources:
@ rondomness

@ orocle access to Froo(-\

PPC.P(X)

—

| Vecel)




Definition of PCP | |
/[The definition for a language L is o spedial case. ]

We say that (PV) is a PCP system for a relation R

with completeness error ¢ and soundness error £¢ (i 1ese) if the Qollowing holds:
O COMP],ETENESS: V(x,w)eR _Er[\/"-(x)=||TF6-P(X,W)]ZI—EC,

N ~ o Equivalently :
® Sounpness: Yxgl(R) ¥P PBr[VT()=l |Fe P ]s&s. el

¥xelL(R) VT Er[Vﬁ(X)=l]\< &

We vyse the notation V"(x;g) +o mokKe explicit that ¢ is the  randomness of V.
We call T a “PCP S’r\"\na“, Tntyitively, T is a “robust encoding“ of a witness,
which admits o probabilstic verification that reads o few symbols of it

for IPs we cared abovt: round complexity , communication complexity ...
for PCPs we have a Somewhat different set of parameters:
. proot alphobet ge foit

2.
¢ 1
R Te 2 j |4;
£ : proot  length Procp () | Vreel®
*q : Verifier query complexity
r .

. verifier - randomness  complexity

(Queries To T are typically non-adaptive )



Some Special Cases

We wish to understand PCP[€c,&s T ¢,9,6,...1 in different regimes.

Svppose. that Hhere is no proof (q=0):
- PPl q9=9, t=o =P

» PcP [9q=0,r=0(logn)]=P

* PP [q=0,F=poly(n) 1= BPP

Suppose that there is no rondomness (r=o0):
+ PCP [q=poly(n), F=0]=NP

A trivial PCP:
+ 3SAT € PCP [£e=0,€=1-g Z={o4}, L=n, q=3,r=logm]
o.e{o}"

P"_°°E Veee (@)= I Sample a random clavse jelml.
2. Check that a satisties the j-th clavse of 9. Wl

We denote by PCP the case with no restrictions ( beyond Vpep tuns in polynomial time)-
PCP := PCP [ €.=0, &=, |Z]=exp(n) £ = exp(n), g=poly(n), r=poly(n)]



: proof alphabet

: proof length

: verifier query complexity

: verifier randomness complexity

Upper Bound: NEXP

+heorem: PCP & NEXP

-~ =M

REVIEW: NTIME[T]= {L ‘ 3 machine M st {Xe15 Vv Mienpo) and Mbw) rns in T ﬁm}

nondeterministic polynomial time - NP=<:((_:JN NTIME [n¢]

hondeterministic exponenfial time: NEXP =C\;/N NTIME [2"<]

lemma:  pcp [&,&,2 L,¢r] < NTIME[ T - (Z"+£-|03|Z|)'Po\y(n)]
proof: Let (PV) be o PCP system for L with the parameters above.
Define the decider as {ollows:
D(mx,Tmr);z 1. For every 5e{o,:}r: compute bg:=v’“(x;g>e{o,|}‘
L 2. Ovtput 1 it ond only if 2 be /2" 2 )-¢&. .

T xel then 3 s+ Dlxw)=1. T xgL then ¥ D(x T)=o. ]
lemma: (1) [ sf"l for non-adaptive verifiers in_constryctions £ g uevally )
(ir) ﬁsf-lzf'q for adaptive verifiers Smaller than these ypper bounds

proof of (i): there are at mock 2" different query sets
proct of (i): each query answetr may lead to a different next query |



Lower Bound: PSPACE

theorem: PSPACE ¢ PCP

We proved +hat TP=PSPACE. So the 1}‘ollowmg lemma suffices.

lemma: IPle, &,k 1 < Pe? [&,&,qzk]

M Let (feVee) be a k-roond TP Ig70\- L. 0 “b' ) y
Consider PCP strings n this Pormat : ) : i
m:= (al / (Qz[bu])b. p (as[b',bz])[,,’bu vee, (QK[b"’"’b""])bn,...,bg..) J( P

The PCP verifier (which adaptively mokes K queries to T) works as follows:
V' (x) := I. Sample IP trandomness ¢.

prior it messages by Vip(xi€)

2. Simvlofe Vze(x;8) where  inround i, the IP prover message s o;[bi,..bia].

CoMPLETENESS: +he honest PCP String i Te= (Fepl), (Prtebl),, ., (Prplby. b))y ).
SOUNDNESS: any PCP string in Hhe above format i an “unrolled” TP prover, ||

If Vie is Puslic-Coiv  then each bi is (independently) random.

Hence ¢=(by,..,bx) and the k queries ( (b, b )iem to T are non-adaptively determined.



Questions

+ Which languages have PCls ! We learned Hhat PSPACE < PCP < NEXP.
A: PCP=NEXP

+ Do PCPs have benefits for NP lanavaaes? E'g query complexity <c witness size.
A: YEs

» Do PCPs have benefits for longuages in P? E-q. PCP verifier time « decision time.
A: YES

o Are there 2k PCR for NP7
A: Yes

—> Many Goob News |

CHALLENGE - the PCP mode| is weird (the PCP verifier has oracle access tp a long Fmo(l)
How are PCPs vseful ?

Two majpr opplications:

@ lead to succinct arguments (cryprogrophic proofs with strong efficiency features)
® lkod to hordness of opproximation resvlts



Delegation of Computation via PCPs

: a . xelL-= dw M(xw)=) . .
\/\/& Wlu P\’DVQI NTIME[T]— {L ‘ 3 machine M st {XG!L%VW M(X,w)=0} and M(xw) runs in T(x) hme.}

theorem: NTIME[T] € PCP

/ {Proo{‘ langth L=poly(T) | query complexity q= PO')'(\OgT)
prover time pt=poly() , verifier time  vE=poly(n,logT)

ly (JogT)
oymy P07
X €{o}"— e {o,1}’ x.& $o1"
- °
W Q{O,I}T - be {0/“\
poly (T) time poly (nlogT) time

P\'ovina Hhe theorem will involve:

. \’Q.Cyc\inc\, {'e_d\hiques (orithmetization  sumcheck protocol,...)

¢ now deas | \ow-dtgm +e§1'in3, svecinet arithmetizodion ,-)

In this setup, a single reliable PC can monitor the

operation of a herd of supercomputers working with & : hOW -I—O USe ’ 'HHS SQ_"'UP\\ ?

possibly extremely powerful but unreliable software and
‘untested hardware.

K Checking Computations in Polylogarithmic Time

Ldszlé Babai'l Lance Fortnow? Leonid A. Levin® Mario Szegedy®
Univ. of Chicago ® and Dept. Comp. Sci. Dept. Comp. Sci. Dept. Comp. Sci.
E6tvés Univ., Budapest Univ. of Chicago ® Boston University * Univ. of Chicago °



Crypto Interlude: Succinct Interactive Arguments [1/4]

An inferactive argument (1A) is an interactive proof (IP) where Soundness i reloxed to:

Comeutational Sounoness: ¥xgL(R) ¥ efficient P Pr(( 'ﬁ(l‘),v (1 x;r,,)>=]]<£s(>,><).
v

Theotem . Suppose that L € PCP | proof length £
query complexity q  verifier time vt

proof alphabet Z  prover time pf }

Then we can vse crypto to construct a public-coin interactive argument Por L with:
Found complexity k=2 prover time O, (pt)
communication complexity Ox(cl’loalil"%lf) verifier time O, (vE)

It we apply this transformation o the PCP on the prior slides,
then we get o succinet interactive argument:

poly (), logT)
P < XE {O/Q“

wefol — > b e {0}
poly(\,T) time poly (. logT) time

x € {bllznﬁ‘

NoTE : this does NoT contradict the limitations of Ifc pith small communication.
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Crypto Interlude: Succinct Interactive Arguments [2/4]

ProoE ATTEMPT #|:

FIA(X,VO) V:A(X)

« Produce PCP string: TV = Bee (x,0). S Samplc PCP  rondomness ge{o,llr.
* Deduce PCP query Set Q for \/fg(x;g).

. St a=TlaleZ® _o M (geta

ProgLeM: o maliciovs prover con pick the answers o based on the query. set Q.

( Sepatately, we cannot hope 1o guccead “withovt Cryprogaphy. )
Proor ATremPT #2

Fra(x, w) Vza (%)

* Prodvce PCP string. Th:= Free (X,w).

« Commit to PCP: cm:= Hash(TI). _m |

+ Deduce  PCP query set Q for Vi (x:3). 3 Sample PCP randomness ge foV"
. St a=T[aleZ® AT Vg™ (xjg)t 4 X Hash(IZ e

X TL[@)2a

ProgLeM: +he honest prover sends the entire pcp
11



Crypto Interlude: Succinct Interactive Arguments [3/4]

We need o short commitment with local openings.
An example is o Merkie CoMmitMeEnT |
let h:{o,¥"={0,} be o hash function.

« MTLRY. Commit (meio)): [ Ovtput:
Paicwise hosh the . = ~ Merkle root: rte=mig € {DA}X.
message vahil you Ly it - avxiliary info: avx:=(m,(mig;).
obrain one block. 1 1 B B B[

CopuH\ (4) is green below:

» MT[h1. Open (avx, @<[1]):
For evry €@, seb phii= (M, )yg copatni - Ovtput pi= (pfilica.
» MT.[h). Chesk (1, Q<[ aelio)® pF=(ph)icg):
For every ie@, check that pfi outhenficates qlil for position | relative to rt.

lemma: ]—L:{sz{l-\,\:{o,\}b\—a-EO,llx})‘eN is collision resistant > MT[H] is position-binding .

JieQinQy: a,[i)#a,[i]

¥ efficient A B [ 2360 | Cy) A -neglo) ¥ ebficient A B | MTIML Check(rt &, 00p6)-1

(l’t @, a1, ph )(_A(h)] = ng_sl()\)
heHal MTh]. Cheek(rt,®;,,p8,)=1

! Ga,02, phy
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Crypto Interlude: Succinct Interactive Arguments [4/4]

Kiliaw's protocol: first commit to PCP string | and then locally open it

Ba (1% x, ) Va (1} x)
Produce PCP S’rringt = ﬁm(x,w)ezz. ¢ h Sample CRH: he Ha
Commit to it (H',o.ux) = MTD\]COMM\HT[) rt

[ For simpliCﬂ'y here we aSsume |03|Zl S)\.]
Deduce query set Q<M1 for Vi),
Set answers: a:=TI[Q)€ ZQ.

[@,a] 2
Avthenticate answers: F(‘ = MT[h],OPzn(uux,&). Q,a,?p (‘; Vicp > (x;9) =\

MTTh]. Check (r1,Q,a,pf)2 ¢

S Sample. PCP randomnesc: ge {1}

AN

* round complexity : 2

« communication complexity: poly(N+ X+ r 4 q- (loaﬁ:, log|Z| + 7""’32) = poly (A)+r+ 9: (loc(‘lilﬁx.loaﬂ).
* prover Time: Fime ( Peep) + Fime (qu,)+ OX(Q.|08|2|) x ptt OA“"08 1=1).

-+ verifier time:  poly (A) + v+ Time (Vpep) + Oy loaf.loﬂlzl)z vi+ Oxllogd-loglZl).

SECURITY ( Efyjf}'\“‘i g‘;s‘ff’e); & Rewinping ARGUNENT , assuming that h is collision resistant

(more Senqml\y: Q& Pos\"rion—bir\ding vector commitment)
13
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