Foundations of Probabilistic Proofs

A course by **Alessandro Chiesa**

Lecture 06

Intro to PCPs

Checking a proof without reading it?

Goal in the next few lectures:

probabilistically check non-interactive proofs
at few locations with small error

CHALLENGE: what if the proof has only a single "mistake"? (How to catch the mistake w.h.p.?)

EXAMPLE: given a graph G=(V,E) and a coloring $\chi:V\to\{1,2,3\}$, how to probabilistically check that χ is a 3-coloring of G?

(If G is not 3-colorable, at worst all but one edges are valid!)

The theory of Probabilistically CHECKABLE PROOFS (PCPs) addresses this challenge!

Tools and ideas from interactive proofs, coding theory, property testing, and more.

New Short Cut Found For Long Math Proofs

A proof can be tested by checking just a part, inventors say.

By GINA KOLATA

N a discovery that overturns centuries of mathematical tradition, a group of graduate students and young researchers has discovered a way to check even the longest and most complicated proof by scrutinizing it in just a few spots.

The finding, which some mathematicians say seems almost magical, depends upon transforming the set of logical statements that constitute a proof into a special mathematical form in which any error is so amplified as to be easily detectable.

Using this new result, the researchers have already made a landmark discovery in computer science. They showed that it is impossible to compute even approximate solutions for a large group of practical problems that have long foiled researchers. Even that negative finding is very significant, experts say, because in mathematics, a negative result,

showing something is impossible, can be just as important and open just as many new areas of research as a positive one.

The discovery was made by Sanjeev Arora and Madhu Sudan, graduate students at the University of California at Berkeley, Dr. Rajeev Motwani, an assistant professor at Stanford University, and Dr. Carsten Lund and Dr. Mario Szegedy, young computer scientists at A.T.&T. Bell Laboratories. Dr. Motwani, who is the senior member of the group, just turned 30 on March 26.

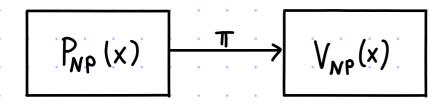
"With the conventional notion of a proof, you had to check it line by line," said Dr. Michael Sipser, a theoretical computer scientist at the Massachusetts Institute of Technology. "An error might be buried on page 475, line 6. A 'less than or equal to' should have been a 'less than.' That would totally trash the whole proof. But you'd have to dig through the whole thing to find it," Dr. Sipser said. Now, he added, "the new idea is that there is a way to transform any proof so that if there is an error, it appears almost everywhere. I'd say, 'You have a proof? Show me a page." If there is an error, it will be there."

The finding, which is built on two and a one half years work by leading

Continued on Page C10

New Model: Probabilistically Checkable Proofs

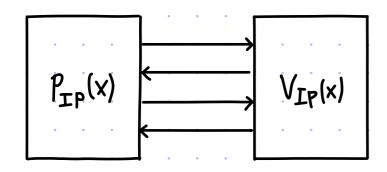
NP represents proofs checkable via a deterministic polynomial-time verifier:



INTERACTIVE PROOFS:

IP represents proofs checkable via a polynomial-time verifier that has these additional resources:

- 12291 mobrat (
- 2 interaction

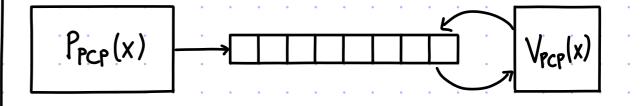


TODAY WE STUDY A NEW MODEL

PROBABILISTICALLY-CHECKABLE PROOFS:

PCP represents proofs checkable via a polynomial-time verifier that has these additional resources:

- 12 tandomness
- 2 oracle access to proof



Definition of PCP

[The definition for a language L is a special case.]

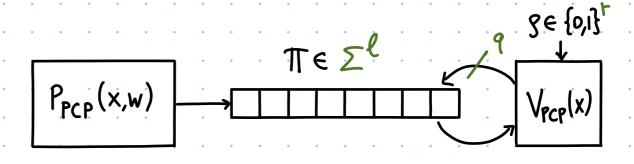
We say that (P,V) is a PCP system for a relation R with completeness error \mathcal{E}_{c} and soundness error \mathcal{E}_{s} (with 1- \mathcal{E}_{c} >, \mathcal{E}_{s}) if the following holds:

- O COMPLETENESS: $\forall (x,w) \in \mathbb{R}$ $P_{\Gamma}[V^{\Pi}(x) = I \mid \Pi \leftarrow P(x,w)] \ge I \varepsilon_{c}$.

We use the notation $V^{\pi}(x;g)$ to make explicit that g is the randomness of V. We call π a "PCP string". Intuitively, π is a "robust encoding" of a witness, which admits a probabilistic verification that reads a few symbols of it.

For IPs we cared about: round complexity, communication complexity,...
For PCPs we have a somewhat different set of parameters:

- · Z: proof alphabet
- l: proof length
- · 9: Verifier query complexity
- · r: verifier randomness complexity



(Queries to IT are typically non-adaptive.)

Some Special Cases

We wish to understand PCP[$\varepsilon_c, \varepsilon_s, \Sigma, \ell, q, r, ...$] in different regimes.

Suppose that there is no proof (q=0):

- PCP[q=0,t=0]=P (no proof and no randomness)
- PCP [q=0, r=0(logn)]=P (can try all random strings in polynomial time)
- PCP [q=0, r=poly(n)]=BPP (any amount of randomness but no proof)

Suppose that there is no randomness (r=0):

· PCP [q = poly(n), r = 0] = NP (queries are fixed and polynomially many)

A trivial PCP:

- 3SAT \in PCP $[\mathcal{E}_c=0, \mathcal{E}_s=1-\frac{1}{m}, \Sigma=\{0,1\}, \ell=n, q=3, r=\log m]$ Proof: $V_{PCP}^{ae\{0,1\}^n}(\varphi):=1$. Sample a random clause $j\in[m]$.
 - 2. Check that a satisfies the j-th clause of φ .

We denote by PCP the case with no restrictions (beyond V_{PCP} runs in polynomial time): PCP := PCP [$\varepsilon_c = 0$, $\varepsilon_s = \frac{1}{2}$, $|\Sigma| = \exp(n)$, $\ell =$

Upper Bound: NEXP

I: proof alphabet

1: proof length

q: verifier query complexity

r: verifier query complexity

theorem: PCP = NEXP

```
REVIEW: NTIME[T] = \{L \mid \exists \text{ machine M s.t. } \{x \in L \to \exists w \text{ M}(x,w)=1 \} \} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \forall w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{ M}(x,w)=0\} and M(x,w) runs in T(|x|) time \{x \notin L \to \exists w \text{
```

lemma: $PCP[\mathcal{E}_c, \mathcal{E}_s, \Sigma, l, r] \subseteq NTIME[T = (2^r + l \cdot log |\Sigma|) \cdot poly(n)]$ proof: Let (P, V) be a PCP system for L with the parameters above. Define the decider as follows:

```
D(x,\pi) := 1. \text{ For every } g \in \{0,1\}^r : \text{ compute } b_g := V^{\pi}(x;g) \in \{0,1\}.
2. \text{ Output 1 if and only if } \Sigma_g b_g / 2^r \ge 1 - \varepsilon_c.
```

If $x \in L$ then $\exists \pi \text{ s.t. } D(x,\pi)=1$. If $x \not\in L$ then $\forall \pi D(x,\pi)=0$.

lemma: (i) $l \leq 2^{t} \cdot q$ for non-adaptive verifiers (in constructions l is usually (ii) $l \leq 2^{t} \cdot |\Sigma|^{q} \cdot q$ for adaptive verifiers (smaller than these upper bounds) proof of (i): there are at most 2^{t} different query sets

proof of (ii): each query answer may lead to a different next query

Lower Bound: PSPACE

theorem: PSPACE = PCP

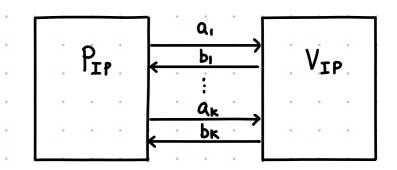
We proved that IP=PSPACE. So the following lemma suffices.

lemma: $IP[\mathcal{E}_{c}, \mathcal{E}_{s}, \frac{K}{k}] \subseteq PCP[\mathcal{E}_{c}, \mathcal{E}_{s}, \frac{q=K}{q=K}]$

proof: Let (PIP, VIP) be a K-round IP for L.

Consider PCP strings in this format:

$$\Pi := (a_1, (a_2[b_1])_{b_1}, (a_3[b_1,b_2])_{b_1,b_2}, \dots, (a_k[b_1,...,b_{k-1}])_{b_1,...,b_{k-1}})$$



The PCP verifier (which adaptively makes k queries to T) works as follows:

 $V^{\pi}(x) := 1$. Sample IP randomness g.

prior i-1 messages by VIP(x; g)

2. Simulate VIP(x;3) where, in round i, the IP prover message is a;[bi,...,bi-i].

COMPLETENESS: the honest PCP string is T= (PIP(x), (PIP(x,bi)), ..., (PIP(x,bi,...,bk-1)), ..., bk-1)), ..., bk-1)

SOUNDNESS: any PCP string in the above format is an "unrolled" IP prover.

If VIP is Public-Coin then each bi is (independently) random.

Hence $g=(b_1,...,b_k)$ and the k queries $((b_1,...,b_{i-1}))_{i\in[k]}$ to π are non-adaptively determined.

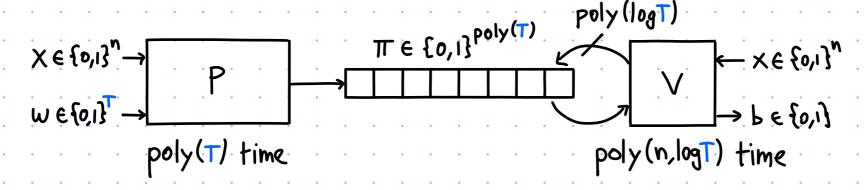
Questions

- · Which languages have PCPs? We learned that PSPACE = PCP = NEXP.
- A: PCP = NEXP
- Do PCPs have benefits for NP languages? E.g. query complexity << witness size.
- A: YES
- Do PCPs have benefits for languages in P? E.g. PCP verifier time « decision time.
- A: YES
- · Are there ZK PCPs for NP?
- A: YES
- -> MANY GOOD NEWS!
- CHALLENGE: the PCP model is weird (the PCP verifier has oracle access to a long proof).
 How are PCPs useful?

Two major applications:

- 1 lead to succinct arguments (cryptographic proofs with strong efficiency features)
- 2 lead to hardness of approximation results

Delegation of Computation via PCPs



Proving the theorem will involve:

- · recycling techniques (arithmetization, sumcheck protocol,...)
- · new ideas (low-degree testing, succinct arithmetization,...)

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with possibly extremely powerful but unreliable software and untested hardware.

Q: how to use "this setup"?

Checking Computations in Polylogarithmic Time

László Babai¹ Univ. of Chicago⁶ and Eötvös Univ., Budapest Lance Fortnow²
Dept. Comp. Sci.
Univ. of Chicago⁶

Leonid A. Levin³
Dept. Comp. Sci.
Boston University⁴

Mario Szegedy ⁵
Dept. Comp. Sci.
Univ. of Chicago ⁶

Crypto Interlude: Succinct Interactive Arguments [1/4]

An interactive argument (IA) is an interactive proof (IP) where soundness is relaxed to:

COMPUTATIONAL SOUNDNESS:
$$\forall x \not\in L(R) \ \forall \ \text{efficient} \ \widetilde{P} \ P_{r_{v}} \Big[\Big\langle \widetilde{P}(I^{\lambda}), V(I^{\lambda}, x; r_{v}) \Big\rangle = I \Big] \leqslant \mathcal{E}_{s}(\lambda, x).$$

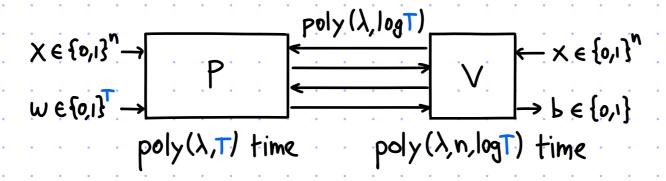
Theorem: Suppose that $L \in PCP$ [proof alphabet Σ prover time pt proof length ℓ query complexity q verifier time vt].

Then we can use crypto to construct a public-coin interactive argument for L with:

round complexity K=2prover time $O_{\lambda}(pt)$

communication complexity $O_{\lambda}(q \cdot log | \Sigma | \cdot log \ell)$ verifier time $O_{\lambda}(vt)$

If we apply this transformation to the PCP on the prior slides, then we get a succinct interactive argument:



NOTE: this does NOT contradict the limitations of IPs with small communication.

Crypto Interlude: Succinct Interactive Arguments [2/4]

PROOF ATTEMPT #1:

- · Produce PCP string: TT := Prop (x, w).
- · Deduce PCP query set Q for VPCP (x;3).
- · Set a = T[Q] ∈ ZQ.

$$V_{IA}(x)$$

Sample PCP randomness ge {0,1}".

$$\frac{\alpha}{V_{PCP}} \bigvee_{x,y}^{[0,\alpha]} (x,y) \stackrel{?}{=} 1$$

PROBLEM: a malicious prover can pick the answers a based on the query set Q

cm

(Separately, we cannot hope to succeed without cryptography.)

PROOF ATTEMPT #2:

- · Produce PCP string: T:= Prep(x,w).
- · Commit to PCP: cm := Hash(II).
- · Deduce PCP query set Q for VPCP (x;8).
- · Set a = T[Q] \ \(\sum_{\quad}^{\quad} \).

$$V_{IA}(x)$$

Sample PCP randomness $g \in \{0,1\}^r$. A, Π $V_{PCP} = 1 \times \frac{1}{2} \times \frac{1}{$

PROBLEM: the honest prover sends the entire PCP

Crypto Interlude: Succinct Interactive Arguments [3/4]

We need a short commitment with local openings. An example is a MERKLE COMMITMENT. Let $h: \{0,1\}^{2\lambda} \rightarrow \{0,1\}^{\lambda}$ be a hash function.

• MT[h]. Commit (m ∈ {0,1} (·λ): Pairwise hash the message until you obtain one block.

Output:

- Merkle root: rt:=m1,8 ∈ {0,1} .
- auxiliary info: aux := (m, (m i,j)i,j).

Copath (4) is green below:

· MT[h]. Open (aux, Q∈[l]): For every ie Q, set pfi := (m,) ve copath(i). Output pf:= (pfi)ieQ.

• MT.[h]. Check (rt, Q=[l], a=(f0,13)), pf=(pfi)i=0):

For every iea, check that pfi authenticates ali] for position i relative to rt.

lemma: H={H₁={h₁:{0,1}²}→{0,1}¹}_{len} is collision resistant → MT[H] is position-binding.

$$\forall$$
 efficient A $P_{h \leftarrow H_{\lambda}} \begin{bmatrix} x \neq y \\ h(x) = h(y) \end{bmatrix} (x,y) \leftarrow A(h) = negl(\lambda)$

$$\forall \text{ efficient } A \text{ } \Pr_{h \in H_{\lambda}} \left[\begin{array}{c} X \neq Y \\ h(x) = h(y) \end{array} \middle| (x,y) \leftarrow A(h) \right] = \text{negl}(\lambda)$$

$$\forall \text{ efficient } A \text{ } \Pr_{h \in H_{\lambda}} \left[\begin{array}{c} \exists i \in Q_{1} \cap Q_{2} : \alpha_{1}[i] \neq \alpha_{2}[i] \\ \text{MT[h]. Check}(rt,Q_{1},\alpha_{1},pf_{1}) = I \\ \text{MT[h]. Check}(rt,Q_{2},\alpha_{2},pf_{2}) = I \end{array} \middle| (rt,Q_{1},q_{1},pf_{1}) \leftarrow A(h) \right] = \text{negl}(\lambda)$$

Crypto Interlude: Succinct Interactive Arguments [4/4]

h

- rt

. . 3 .

Kilian's protocol: first commit to PCP string, and then locally open it

Produce PCP string:
$$T := P_{RCP}(x, w) \in \Sigma^{\ell}$$
.

Commit to it: $(rt, aux) := MT[h]$. Commit(T).

[For simplicity here we assume $logl\Sigma | \in \lambda$.]

Deduce query set $Q \subseteq [\ell]$ for $V_{PCP}^{T}(x;g)$.

Set answers: $a := TT[Q] \in \Sigma^{Q}$.

Set answers:
$$a := TT[Q] \in \mathbb{Z}^Q$$
.
Authenticate answers: $pf := MT[h]$. Open (aux, Q). Q, a, pf

$$V_{IA}(I^{\lambda}, x)$$

$$V_{PCP}^{[Q,a]}(x;g) \stackrel{?}{=} 1$$

MT[h] Check (rt,Q,a,pf)=1

- · round complexity: 2
- communication complexity: $poly(\lambda) + \lambda + r + q \cdot (log \ell + log \ell) = poly(\lambda) + r + q \cdot (log \ell + log \ell)$.
- prover time: time (Ppcp) + time (Vpcp) + O_λ(l·log|Σ|) ≈ pt + O_λ(l·log|Σ|).
- · verifier time: poly (λ) + r + time (V_{PCP}) + O_λ (logl·log|Σ|) ≈ vt + O_λ (logl·log|Σ|).

Bibliography

PCPs

- [BFLS 1991]: Checking computations in polylogarithmic time, by László Babai, Lance Fortnow, Leonid Levin, Mario Szegedy.
- [FGLSS 1996]: Interactive proofs and the hardness of approximating cliques, by Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, Mario Szegedy.
- [AS 1998]: Probabilistic checking of proofs: a new characterization of NP, by Sanjeev Arora, Shmuel Safra.
- [ALMSS 1998]: Proof verification and the hardness of approximation problems, by Sanjeev Arora,
 Carsten Lund, Rajeev Motwani, Madhu Sudan, Mario Szegedy.
- How computer scientists learned to reinvent the proof. Quanta 2022.
- (Scientific revolutions, ToC and PCP), by Avi Wigderson.
- New short cut found for long math proofs, New York Times 1992.

Succinct Arguments from PCPs

- [Kilian 1992]: A note on efficient zero-knowledge proofs and arguments, by Joe Kilian.
- [Micali 2000]: Computationally sound proofs, by Silvio Micali.
- [Merkle 1989]: A certified digital signature, by Ralph Merkle.
- [CY 2024]: Building cryptographic proofs from hash functions, by Alessandro Chiesa, Eylon Yogev.
 (Video)
- [CDGS 2023]: On the security of succinct interactive arguments from vector commitments, by Alessandro Chiesa, Marcel Dall'Agnol, Ziyi Guan, Nicholas Spooner.